II B.Tech - I Semester – Regular / Supplementary Examinations DECEMBER 2022

ELECTRICAL MACHINES - I (ELCTRICAL & ELECTRONICS ENGINEERING)

Duration: 3 hours

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	СО	Max. Marks
		UNIT-I			
1	a)	Discuss terms i) Magneto Motive Force	L2	CO2	7 M
		ii) Permeance iii) Reluctance			
	b)	A coil of 100 turns is wound uniformly over	L3	CO2	7 M
		an insulator ring with a mean circumference			
		of 2m and uniform sectional area of			
		0.025cm^2 . If the coil carrying a current of			
		2A Calculate i) MMF of the circuit			
		ii) Magnetic Field Intensity iii) Flux density			
		OR		•	
2	a)	Derive an expression for the energy stored	L2	CO2	7 M
		in a magnetic field.			
	b)	State and briefly explain the various	L3	CO2	7 M
		phenomena useful for electro-mechanical			
		energy conversion in rotating machines.			

PVP 20

Max. Marks: 70

		UNIT-II					
3	a)	Illustrate armature reaction in a DC machine	L3	CO2	7 M		
		and show how cross-magnetizing and					
		demagnetizing MMF are produced.					
	b)	A 6-pole machine has an armature with 90	L4	CO4	7 M		
		slots and 8 conductors per slot and runs at					
		1000 RPM, the flux per pole is 0.05 Wb.					
		Determine the induced EMF if winding is					
		(i) lap connected (ii) Wave connected.					
	OR						
4	a)	Explain various methods of improving	L2	CO2	7 M		
		commutation in DC machines and its					
		advantages.					
	b)	Elaborate the conditions to be fulfilled for	L4	CO4	7 M		
		DC Shunt generators operate in parallel.					
		Explain power sharing between two					
		dissimilar power rated machine.					
		UNIT-III					
5	a)	Interpret why the starting current is high in a	L3	CO2	7 M		
		DC motor? Explain the working of a four-					
		point starter for a DC machine.					
	b)	Two identical DC machines when tested by	L4	CO4	7 M		
		Hopkinsons method give the following test					
		results. Field current are 2.5A and 2A. Line					
		voltage is 220V. Line current including both					
		the field current 10A. Motor armature					
		current is 73A. The armature resistance of					
		each machine is 0.05Ω . Calculate the					
		efficiency of both machines.					

	OR						
6	a)	Explain the Swinburne's test to determine	L2	CO2	7 M		
		the losses of DC machine. Also write its					
		limitations.					
	b)	A 200V DC shunt motor having armature	L4	CO4	7 M		
		resistance of 0.4Ω takes armature current of					
		20A on full load and runs at 600RPM. If					
		resistance 0.5Ω is placed in the armature					
		circuit, find the speed at half-full load					
		torque. What is the ratio of stalling torque to					
		full load torque.					
	1	UNIT-IV					
7	a)	Draw General schematic of a single phase	L3	CO3	7 M		
		transformer. Describe its working principle					
		and diagram. Deduce the expression for					
		EMF in secondary?					
	b)	A single phase 5:1 step down transformer	L4	CO5	7 M		
		takes no-load current of 0.8A at p.f of 0.25					
		lagging with LV winding as open. The					
		secondary is connected to a load, taking a					
		current of 100A at 0.8pf lagging. Find the					
		primary current and power factor.					
	OR						
8	a)	Deduce the approximate equivalent circuit	L3	CO3	7 M		
		of a transformer referred to the primary side					
		and derive relations for equivalent					
		parameters.					
	b)	Explain the procedure to test two identical	L4	CO5	7 M		

		transformers and how will estimate the						
		losses from the test.						
	UNIT-V							
9	a)	Draw and explain the Scott connection of	L3	CO3	7 M			
		transformers and mark the terminals and						
		turn-ratio.						
	b)	A 400/100V, 5kVA, two winding	L4	CO5	7 M			
		transformer is to be an auto transformer to						
		supply power at 400V from 500V source.						
		Draw the connection diagram and determine						
		the kVA output of the auto transformer.						
OR								
10	a)	Explain the significance of vector grouping	L2	CO3	7 M			
		of transformers. Also suggest the conditions						
		to operate transformers in parallel.						
	b)	Distinguish the open Delta connection with	L4	CO5	7 M			
		Delta –Delta connection.						